Counting Codes Over Rings With A Given Hull

Esengül Saltürk

Atlas University, İstanbul, Türkiye
joint work with
Steven T. Dougherty
University of Scranton, USA
Noncommutative Rings and Their Applications VIII,
Université d'Artois, Lens-France
August 30, 2023

Problem

Problem. Let R be a ring of order 4. Then what is the number of linear (additive) codes over R containing a hull of given size?

Problem

Problem. Let R be a ring of order 4. Then what is the number of linear (additive) codes over R containing a hull of given size?

When R is a field, the number for linear codes is given by Sendrier[11].

Definitions

Codes over Rings

Linear codes

- A linear code over a ring R is a submodule of R^{n}.

$$
\begin{aligned}
& \text { Euclidean inner product } \\
& \text { The orthogonal of } C \\
& \qquad C^{\perp}=\{\mathbf{v}, \mathbf{w}]=\sum v_{i} w_{i} . \\
& \text { If } R \text { is a finite commutative Frobenius ring, then } \mid[\mathbf{x}, \mathbf{y}]=0 \text { for all } y \in C\} . \\
& C^{\perp}\left|=|R|^{n},\right. \text { by Wood[13]. }
\end{aligned}
$$

Codes over Rings

Linear codes

- A linear code over a ring R is a submodule of R^{n}.

Euclidean inner product

$$
[\mathbf{v}, \mathbf{w}]=\sum v_{i} w_{i} .
$$

The orthogonal of C

$$
C^{\perp}=\left\{\mathbf{x} \in R^{n} \mid[\mathbf{x}, \mathbf{y}]=0 \text { for all } y \in C\right\} .
$$

If R is a finite commutative Frobenius ring, then $\left|C \| C^{\perp}\right|=|R|^{n}$, by $\operatorname{Wood}[13]$.

Hull of a Code

The Hull of a linear code C is

$$
\operatorname{Hull}(C)=C \cap C^{\perp} .
$$

- So, it is a self-orthogonal code.
- The hull satisfies $1 \leq|\operatorname{Hull}(C)| \leq \sqrt{|R|^{n}}$.

Important for. Determining the complexity of algorithms for permutation equivalence of linear codes and the automorphism group of a linear code.

These algorithms are very effective if the size of the hull is small.

Hull of a Code

The Hull of a linear code C is

$$
\operatorname{Hull}(C)=C \cap C^{\perp}
$$

- So, it is a self-orthogonal code.
- The hull satisfies $1 \leq|\operatorname{Hull}(C)| \leq \sqrt{|R|^{n}}$.

Important for. Determining the complexity of algorithms for permutation equivalence of linear codes and the automorphism group of a linear code.

These algorithms are very effective if the size of the hull is small.

Hull of a Code

The Hull of a linear code C is

$$
\operatorname{Hull}(C)=C \cap C^{\perp}
$$

- So, it is a self-orthogonal code.
- The hull satisfies $1 \leq|\operatorname{Hull}(C)| \leq \sqrt{|R|^{n}}$.

Important for. Determining the complexity of algorithms for permutation equivalence of linear codes and the automorphism group of a linear code.

These algorithms are very effective if the size of the hull is small.

Hull of a Code

- It was first introduced in the work of Assmus and Key to study the codes of finite projective and affine planes, 1990, [1].
- Dougherty used the hull for finite nets, 1993, 1994, [3], [4].
- Sendrier, calculated the number of distinct linear codes over finite fields which have a hull of given dimension were given. He also proved that the expected dimension of the hull of a linear code is a constant when the parameters n and k go to infinity, 1997, [11].

Codes over Rings

Additive codes

- An additive code over a ring R is an additive subgroup of R^{n}.
- Let G be a group. Then the set of all characters of G is denoted by \widehat{G}.
- Then $\phi: G \rightarrow \widehat{G}$ is an isomorphism, with $\phi\left(g_{i}\right)=\chi_{g_{i}}, g_{i} \in G$.

Let C be a code over G with a duality M (a group isomorphism)

$$
[\mathbf{g}, \mathbf{c}]_{M}=\prod \chi_{g_{i}}\left(c_{i}\right) .
$$

The orthogonal of C

$$
C^{\widehat{M}}=\left\{\left(g_{1}, g_{2}, \ldots, g_{n}\right) \mid \prod_{i=1}^{n} \chi_{g_{i}}\left(c_{i}\right)=1 \text { for all }\left(c_{1}, \ldots, c_{n}\right) \in C\right\}
$$

We have $|C|\left|C^{M}\right|=|G|^{n}$, Dougherty[2].

Codes over Rings

Additive codes

- An additive code over a ring R is an additive subgroup of R^{n}.
- Let G be a group. Then the set of all characters of G is denoted by \widehat{G}.
- Then $\phi: G \rightarrow \widehat{G}$ is an isomorphism, with $\phi\left(g_{i}\right)=\chi_{g_{i}}, g_{i} \in G$.

Let C be a code over G with a duality M (a group isomorphism)

$$
[\mathbf{g}, \mathbf{c}]_{M}=\prod \chi_{g_{i}}\left(c_{i}\right) .
$$

The orthogonal of C

We have $|C|\left|C^{M}\right|=|G|^{n}$, Dougherty[2].

Codes over Rings

Additive codes

- An additive code over a ring R is an additive subgroup of R^{n}.
- Let G be a group. Then the set of all characters of G is denoted by \widehat{G}.
- Then $\phi: G \rightarrow \widehat{G}$ is an isomorphism, with $\phi\left(g_{i}\right)=\chi_{g_{i}}, g_{i} \in G$.

Let C be a code over G with a duality M (a group isomorphism)

$$
[\mathbf{g}, \mathbf{c}]_{M}=\prod \chi_{g_{i}}\left(c_{i}\right) .
$$

The orthogonal of C

We have $|C|\left|C^{M}\right|=|G|^{n}$, Dougherty[2].

Codes over Rings

Additive codes

- An additive code over a ring R is an additive subgroup of R^{n}.
- Let G be a group. Then the set of all characters of G is denoted by \widehat{G}.
- Then $\phi: G \rightarrow \widehat{G}$ is an isomorphism, with $\phi\left(g_{i}\right)=\chi_{g_{i}}, g_{i} \in G$.

Let C be a code over G with a duality M (a group isomorphism)

$$
[\mathbf{g}, \mathbf{c}]_{M}=\prod \chi_{g_{i}}\left(c_{i}\right) .
$$

The orthogonal of C

$$
C^{M}=\left\{\left(g_{1}, g_{2}, \ldots, g_{n}\right) \mid \prod_{i=1}^{n} \chi_{g_{i}}\left(c_{i}\right)=1 \text { for all }\left(c_{1}, \ldots, c_{n}\right) \in C\right\}
$$

We have $|C|\left|C^{M}\right|=|G|^{n}$, Dougherty[2].

Hull of a Code

Additive codes

The Hull of an additive code C is

$$
\operatorname{Hull}_{M}(C)=C \cap C^{M} .
$$

Rings of order 4

Rings and Gray maps

$$
\text { Rings : } \mathbb{F}_{4}, \quad \mathbb{Z}_{4}, \quad \mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle, \quad \mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle .
$$

- Codes over \mathbb{F}_{4}

Generating matrix ($T_{k} \mid A$).
$\alpha: \mathbb{F}_{4} \rightarrow \mathbb{F}_{2}^{2}$ such that $\alpha(a+b \omega)=(a, b)$.

$$
\alpha\left(C^{\perp}\right)=\alpha(C)^{\perp} .
$$

- Codes over \mathbb{Z}_{4}

Generating matrix $G=\left(\begin{array}{ccc}I_{k_{0}} & A_{0,1} & A_{0,2} \\ 0 & 2 I_{k_{1}} & 2 A_{1,2}\end{array}\right)$
Type: $\left(k_{0}, k_{1}\right)$
Gray map: $\phi: \mathbb{Z}_{A} \rightarrow \mathbb{F}_{2}^{2}$ such that $\phi(a+2 b)=(b, a+b)$ (non-linear)

Rings and Gray maps

$$
\text { Rings: } \quad \mathbb{F}_{4}, \quad \mathbb{Z}_{4}, \quad \mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle, \quad \mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle
$$

- Codes over \mathbb{F}_{4}

Generating matrix $\left(I_{k} \mid A\right)$. $\alpha: \mathbb{F}_{4} \rightarrow \mathbb{F}_{2}^{2}$ such that $\alpha(a+b \omega)=(a, b)$.

$$
\alpha\left(C^{\perp}\right)=\alpha(C)^{\perp} .
$$

- Codes over \mathbb{Z}_{4}

Type: $\left(k_{0}, k_{1}\right)$

Rings and Gray maps

$$
\text { Rings: } \quad \mathbb{F}_{4}, \quad \mathbb{Z}_{4}, \quad \mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle, \quad \mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle .
$$

- Codes over \mathbb{F}_{4}

Generating matrix $\left(I_{k} \mid A\right)$.
$\alpha: \mathbb{F}_{4} \rightarrow \mathbb{F}_{2}^{2}$ such that $\alpha(a+b \omega)=(a, b)$.

$$
\alpha\left(C^{\perp}\right)=\alpha(C)^{\perp} .
$$

- Codes over \mathbb{Z}_{4}

Generating matrix $G=\left(\begin{array}{ccc}I_{k_{0}} & A_{0,1} & A_{0,2} \\ 0 & 2 I_{k_{1}} & 2 A_{1,2}\end{array}\right)$.
Type: $\left(k_{0}, k_{1}\right)$
Gray map: $\phi: \mathbb{Z}_{4} \rightarrow \mathbb{F}_{2}^{2}$ such that $\phi(a+2 b)=(b, a+b)$ (non-linear)

Rings and Gray maps

- Codes over $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle=\mathbb{F}_{2}+u \mathbb{F}_{2}$

Generating matrix $G=\left(\begin{array}{ccc}I_{k_{0}} & A_{0,1} & A_{0,2} \\ 0 & u I_{k_{1}} & u A_{1,2}\end{array}\right)$
Type: $\left(k_{0}, k_{1}\right)$
Gray map: $\psi: \mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle \rightarrow \mathbb{F}_{2}^{2}$ such that $\psi(a+b u)=(b, a+b)$ (linear)

$$
\psi\left(C^{\perp}\right)=\psi(C)^{\perp} .
$$

- Codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle=\mathbb{F}_{2}+v \mathbb{F}_{2}$

No generating matrix in standard form. No type.
Gray map: $\beta: \mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle \rightarrow \mathbb{F}_{2}^{2}$ such that $\beta(a+b v)=(a, a+b)$.
(isomorphism)

Rings and Gray maps

- Codes over $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle=\mathbb{F}_{2}+u \mathbb{F}_{2}$

Generating matrix $G=\left(\begin{array}{ccc}I_{k_{0}} & A_{0,1} & A_{0,2} \\ 0 & u I_{k_{1}} & u A_{1,2}\end{array}\right)$
Type: $\left(k_{0}, k_{1}\right)$
Gray map: $\psi: \mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle \rightarrow \mathbb{F}_{2}^{2}$ such that $\psi(a+b u)=(b, a+b)$ (linear)

$$
\psi\left(C^{\perp}\right)=\psi(C)^{\perp} .
$$

- Codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle=\mathbb{F}_{2}+v \mathbb{F}_{2}$

No generating matrix in standard form. No type.
Gray map: $\beta: \mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle \rightarrow \mathbb{F}_{2}^{2}$ such that $\beta(a+b v)=(a, a+b)$. (isomorphism)

$$
\beta\left(C^{\perp}\right)=\beta(C)^{\perp} .
$$

Number of Codes

Number of Codes over Fields

Gaussian binomials

The number of subcodes of dimension k of a code of dimension n is given by a well-known formula:

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)} .
$$

Number of Codes over Rings

Gaussian multinomials

Theorem

[6] Let R be one of the rings \mathbb{Z}_{4} or $\mathbb{F}_{2}+u \mathbb{F}_{2}, u^{2}=0$, with type $\left(k_{0}, k_{1}\right)$, with maximal ideal $|R / m|=q=2$ and nilpotency $e=2$. The number of linear codes over R is given by the following formula,
$\left[\begin{array}{c}n \\ k_{0}, k_{1}\end{array}\right]_{q, e}=\left[\begin{array}{c}n \\ k_{0}, k_{1}\end{array}\right]_{2,2}=\frac{\prod_{i=0}^{k_{0}-1}\left(2^{2 n}-2^{n+i}\right) \prod_{j=0}^{k_{1}-1}\left(2^{n}-2^{k_{0}+j}\right)}{\prod_{i=0}^{k_{0}-1}\left(2^{2 k_{0}+k_{1}}-2^{k_{0}+k_{1}+i}\right) \prod_{j=0}^{k_{1}-1}\left(2^{k_{0}+k_{1}}-2^{k_{0}+j}\right)}$.

Number of Self-Orthogonal Codes

Theorem

[8, 9, 10] Let n and q be positive even integers and $k \leq n / 2$. The number of self-orthogonal codes over \mathbb{F}_{q} of length n and dimension k is

$$
\sigma_{n, k}=\frac{q^{n-k}-1}{q^{n}-1} \prod_{i=1}^{k} \frac{q^{n-2 i+2}-1}{q^{i}-1}
$$

The Number of Codes with the Hull of Given Dimension

Lemma

[11] Let C be a linear code over \mathbb{F}_{q} of length n and dimension k. The number of self-orthogonal codes V of length n and dimension l such that
$V \subseteq \operatorname{Hull}(C)$ is the Gaussian binomial $\left[\begin{array}{c}\operatorname{dim}(\operatorname{Hull}(C)) \\ l\end{array}\right]_{q}$.

Lemma

[11] Let V be a self-orthogonal code over \mathbb{F}_{q} of length n and dimension l.
The number of linear codes C over \mathbb{F}_{q} of length n and dimension k such that
$V \subseteq \operatorname{Hull}(C)$ is $\left[\begin{array}{c}n-2 l \\ k-l\end{array}\right]_{q}$.

The Number of Codes with the Hull of Given Dimension

Theorem

[11] Let $\sigma_{n, i}$ denote the number of self-orthogonal codes over \mathbb{F}_{q} of length n and dimension i. Let $k \leq n / 2$ and $l \leq k$. The number of linear codes over \mathbb{F}_{q} of length n and dimension k where the dimension of the hull is l is

$$
\sum_{i=l}^{k}\left[\begin{array}{c}
n-2 i \\
k-i
\end{array}\right]_{q}\left[\begin{array}{l}
i \\
l
\end{array}\right]_{q}(-1)^{i-l} q^{\left(\frac{i-l}{2}\right)} \sigma_{n, i} .
$$

Results I
Number of Additive Codes

Counting Codes over \mathbb{F}_{4}

Additive codes

Duality on the additive group of \mathbb{F}_{4}

M_{E}	0	1	ω	$1+\omega$
0	1	1	1	1
1	1	-1	1	-1
ω	1	1	-1	-1
$1+\omega$	1	-1	-1	1

Lemma
Let $\mathbf{x}, \mathbf{y} \in \mathbb{F}_{4}^{n}$. Then $[\mathrm{v}, \mathrm{w}]_{M_{e}}=1$ if and only if $[\alpha(\mathrm{v}), \alpha(\mathrm{w})]=0$.

Counting Codes over \mathbb{F}_{4}

Additive codes

Duality on the additive group of \mathbb{F}_{4}

M_{E}	0	1	ω	$1+\omega$
0	1	1	1	1
1	1	-1	1	-1
ω	1	1	-1	-1
$1+\omega$	1	-1	-1	1

	00	10	01	11
00	0	0	0	0
10	0	1	0	1
01	0	0	1	1
11	0	1	1	0

Lemma
Let $\mathbf{x}, \mathbf{y} \in \mathbb{F}_{4}^{n}$. Then $[\mathrm{v}, \mathrm{w}]_{M_{e}}=1$ if and only if $[\alpha(\mathrm{v}), \alpha(\mathrm{w})]=0$.

Counting Codes over \mathbb{F}_{4}

Additive codes

Duality on the additive group of \mathbb{F}_{4}

M_{E}	0	1	ω	$1+\omega$
0	1	1	1	1
1	1	-1	1	-1
ω	1	1	-1	-1
			00	00
10	0	0	0	0
0	0	0	0	0
$1+\omega$	1	-1	-1	1

Lemma
Let $\mathbf{x}, \mathbf{y} \in \mathbb{F}_{4}^{n}$. Then $[\mathbf{v}, \mathbf{w}]_{M_{E}}=1$ if and only if $[\alpha(\mathbf{v}), \alpha(\mathbf{w})]=0$.

Counting Codes over \mathbb{F}_{4}

Additive codes

Duality on the additive group of \mathbb{F}_{4}

M_{E}	0	1	ω	$1+\omega$					
0	1	1	1	1					
1	1	-1	1	-1			00	10	01
	10	0	0	0	0				
ω	1	1	-1	-1		01	0	0	0
$1+\omega$	1	-1	-1	1		11	0	1	1
$1+$	1	1							

Lemma

Let $\mathbf{x}, \mathbf{y} \in \mathbb{F}_{4}^{n}$. Then $[\mathbf{v}, \mathbf{w}]_{M_{E}}=1$ if and only if $[\alpha(\mathbf{v}), \alpha(\mathbf{w})]=0$.

Theorem

Let C be an additive code over \mathbb{F}_{4}. Then

$$
\operatorname{Hull}(\alpha(C))=\alpha\left(\operatorname{Hull}_{M_{E}}(C)\right) .
$$

Counting Codes over \mathbb{F}_{4}

Additive codes

Theorem

The number of additive codes over \mathbb{F}_{4} of length n where $\operatorname{Hull}_{M_{E}}(C)$ has size 2^{k} is equal to the number of binary linear codes of length $2 n$ with hulls of dimension k.

$$
\begin{aligned}
& \text { Theorem } \\
& \text { The number of additive codes over } \mathbb{F}_{4} \text { of length } n \text { and size } 2^{k} \text { whose hull } \\
& \text { with respect to } M_{E} \text { has size } 2^{l} \text { with } l \leq k \text { and } k \leq 2 n / 2 \text { is } \\
& \qquad \sum_{i=l}^{k}\left[\begin{array}{c}
2 n-2 i \\
k-i
\end{array}\right]_{2}\left[\begin{array}{c}
i \\
l
\end{array}\right]_{2}(-1)^{i-l} 2^{\left(i_{2}^{-1}\right)} \sigma_{2 n, i}, \\
& \text { where } \sigma_{n, i} \text { is the number of binary self-orthogonal codes of length } n \\
& \text { and dimension } i \text {. }
\end{aligned}
$$

Counting Codes over \mathbb{F}_{4}

Additive codes

Theorem

The number of additive codes over \mathbb{F}_{4} of length n where $\operatorname{Hull}_{M_{E}}(C)$ has size 2^{k} is equal to the number of binary linear codes of length $2 n$ with hulls of dimension k.

Theorem

The number of additive codes over \mathbb{F}_{4} of length n and size 2^{k} whose hull with respect to M_{E} has size 2^{l} with $l \leq k$ and $k \leq 2 n / 2$ is

$$
\sum_{i=l}^{k}\left[\begin{array}{c}
2 n-2 i \\
k-i
\end{array}\right]_{2}\left[\begin{array}{l}
i \\
l
\end{array}\right]_{2}(-1)^{i-l} 2^{(i-l)} \sigma_{2 n, i}
$$

where $\sigma_{n, i}$ is the number of binary self-orthogonal codes of length n and dimension i.

Example

Let $n=2, k=2$ and $l=1 . \sigma_{4,1}=7$ and $\sigma_{4,2}=3$. The number of additive codes over $\mathbb{F}_{4}=\{0,1, w, 1+w\}$ of length 2 and size 2^{2} whose hull has size 2^{1} is 12 :

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 0 \\
w & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
w & w
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & 1+w
\end{array}\right),\left(\begin{array}{cc}
w & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
w & 0 \\
1 & w
\end{array}\right),\left(\begin{array}{cc}
w & 0 \\
0 & 1+w
\end{array}\right), \\
& \left(\begin{array}{cc}
0 & 1 \\
1+w & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
1 & w
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
w & w
\end{array}\right),\left(\begin{array}{cc}
0 & w \\
1+w & 0
\end{array}\right),\left(\begin{array}{cc}
0 & w \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & w \\
w & 1
\end{array}\right) .
\end{aligned}
$$

Ratio of The Number of Linear Codes and The Number of Additive Codes

Theorem

The ratio of the number of linear codes over \mathbb{F}_{4} of length n and dimension k and the number of additive codes over \mathbb{F}_{4} of length n and size 4^{k} goes to 0 as n goes to infinity:

Ratio of The Number of Linear Codes and The Number of Additive Codes

Theorem

The ratio of the number of linear codes over \mathbb{F}_{4} of length n and dimension k and the number of additive codes over \mathbb{F}_{4} of length n and size 4^{k} goes to 0 as n goes to infinity:

$$
\lim _{n \rightarrow \infty} \frac{\left[\begin{array}{l}
n \\
k
\end{array}\right]_{4}}{\left[\begin{array}{l}
2 n \\
2 k
\end{array}\right]_{2}}=0
$$

Ratio of The Number of Linear Codes and The Number of Additive Codes

Theorem

The ratio of the number of linear codes over \mathbb{F}_{4} of length n and dimension k with a given hull of dimension l and the number of additive codes over \mathbb{F}_{4} of length n and size 4^{k} whose hull with respect to M_{E} has size $4^{l}, l \leq k$, goes to 0 as n goes to infinity:

Ratio of The Number of Linear Codes and The Number of Additive Codes

Theorem
The ratio of the number of linear codes over \mathbb{F}_{4} of length n and dimension k with a given hull of dimension l and the number of additive codes over \mathbb{F}_{4} of length n and size 4^{k} whose hull with respect to M_{E} has size $4^{l}, l \leq k$, goes to 0 as n goes to infinity:

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=l}^{k}\left[\begin{array}{c}
n-2 i \\
k-i
\end{array}\right]_{4}\left[\begin{array}{l}
i \\
l
\end{array}\right]_{4}(-1)^{i-l} 4^{(i-1)} \sigma_{n, i}}{\sum_{j=l}^{k}\left[\begin{array}{c}
2 n-4 j \\
2 k-2 j
\end{array}\right]_{2}\left[\begin{array}{c}
2 j \\
2 l
\end{array}\right]_{2}(-1)^{2 j-2 l 2} 2^{(2 j-2 l}{ }_{2}^{(2 l)} \sigma_{2 n, 2 j}}=0 .
$$

Counting Codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$
Additive codes

Duality on the additive group of $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$

M_{E}	0	1	v	$1+v$
0	1	1	1	1
1	1	1	-1	-1
v	1	-1	-1	1
$1+v$	1	-1	1	-1

	0	11	01	10
0	0	0	0	0
11	0	0	1	1
01	0	1	1	0
10	0	1	0	1

Lemma

Let $\mathbf{v}, \mathbf{w} \in \mathbb{F}_{2}[\nu] /\left\langle\nu^{2}+\nu\right\rangle^{n}$. Then $[\mathrm{v}, \mathrm{w}]_{M}=1$ if and only if $[\beta(\mathrm{v}), \beta(\mathrm{w})]=0$.

Counting Codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$
Additive codes

Duality on the additive group of $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$

M_{E}	0	1	v	$1+v$
0	1	1	1	1
1	1	1	-1	-1
v	1	-1	-1	1
$1+v$	1	-1	1	-1

	0	11	01	10
0	0	0	0	0
11	0	0	1	1
01	0	1	1	0
10	0	1	0	1

Lemma
Let $\mathbf{v}, \mathbf{w} \in \mathbb{F}_{2}[v] /\left\langle\nu^{2}+v\right\rangle^{n}$. Then $[\mathrm{v}, \mathrm{w}]_{M}=1$ if and only if $[\beta(\mathrm{v}), \beta(\mathrm{w})]=0$.

Counting Codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$

Additive codes

Duality on the additive group of $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$

M_{E}	0	1	v	$1+v$
0	1	1	1	1
1	1	1	-1	-1
v	1	-1	-1	1
$1+v$	1	-1	1	-1

	0	11	01	10
0	0	0	0	0
11	0	0	1	1
01	0	1	1	0
10	0	1	0	1

Lemma
Let $\mathbf{v}, \mathbf{w} \in \mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle^{n}$. Then $[\mathbf{v}, \mathbf{w}]_{M}=1$ if and only if $[\beta(\mathbf{v}), \beta(\mathbf{w})]=0$.

Counting Codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$

Additive codes

Duality on the additive group of $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$

M_{E}	0	1	v	$1+v$
0	1	1	1	1
1	1	1	-1	-1
v	1	-1	-1	1
$1+v$	1	-1	1	-1

	0	11	01	10
0	0	0	0	0
11	0	0	1	1
01	0	1	1	0
10	0	1	0	1

Lemma
Let $\mathbf{v}, \mathbf{w} \in \mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle^{n}$. Then $[\mathbf{v}, \mathbf{w}]_{M}=1$ if and only if $[\beta(\mathbf{v}), \beta(\mathbf{w})]=0$.

Theorem

Let C be an additive code over $\mathbb{F}_{2}[\nu] /\left\langle\nu^{2}+\nu\right\rangle$. Then

$$
\operatorname{Hull}(\beta(C))=\beta\left(\operatorname{Hull}_{M_{E}}(C)\right) .
$$

Counting Codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$

Additive codes

Theorem
The number of additive codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$ of length n where Hull $_{M_{E}}(C)$ has size 2^{k} is equal to the number of binary linear codes of length $2 n$ with hulls of dimension k.

```
Theorem
The number of additive codes over }\mp@subsup{\mathbb{F}}{2}{}[v]/\langle\mp@subsup{v}{}{2}+v\rangle\mathrm{ of length n and size 2}\mp@subsup{2}{}{k
whose hull size is 2}\mp@subsup{2}{}{\prime},l\leqk\mathrm{ , is
    \sum i=l [}[\begin{array}{c}{2n-2i}\\{k-i}\end{array}\mp@subsup{]}{2}{}[\begin{array}{c}{i}\\{l}\end{array}\mp@subsup{]}{2}{}(-1\mp@subsup{)}{}{i-l}2[\begin{array}{c}{(\begin{array}{l}{2}\\{2}\end{array})}\\{\mp@subsup{\sigma}{2n,i}{},}
where }\mp@subsup{\sigma}{n,i}{}\mathrm{ is the number of binary self-orthogonal codes of length n
and dimension i.
```


Counting Codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$

Additive codes

Theorem
The number of additive codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$ of length n where Hull $_{M_{E}}(C)$ has size 2^{k} is equal to the number of binary linear codes of length $2 n$ with hulls of dimension k.

Theorem

The number of additive codes over $\mathbb{F}_{2}[v] /\left\langle\nu^{2}+v\right\rangle$ of length n and size 2^{k} whose hull size is $2^{l}, l \leq k$, is

$$
\sum_{i=l}^{k}\left[\begin{array}{c}
2 n-2 i \\
k-i
\end{array}\right]_{2}\left[\begin{array}{l}
i \\
l
\end{array}\right]_{2}(-1)^{i-l} 2^{(i-l)} \sigma_{2 n, i},
$$

where $\sigma_{n, i}$ is the number of binary self-orthogonal codes of length n and dimension i.

Example

Let $n=2, k=2$ and $l=1 . \sigma_{4,1}=7$ and $\sigma_{4,2}=3$. The number of additive codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle=\{0,1, v, 1+v\}, v^{2}=v$, of length 2 and size 2^{2} whose hull has size 2^{1} is 12 :

$$
\begin{gathered}
\left(\begin{array}{cc}
1+v & 0 \\
v & 1+v
\end{array}\right),\left(\begin{array}{cc}
1+v & 0 \\
v & v
\end{array}\right),\left(\begin{array}{cc}
1+v & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
v & 0 \\
1+v & 1+v
\end{array}\right) \\
\left(\begin{array}{cc}
v & 0 \\
1+v & v
\end{array}\right),\left(\begin{array}{cc}
v & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1+v \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 1+v \\
1+v & v
\end{array}\right) \\
\left(\begin{array}{cc}
0 & 1+v \\
v & v
\end{array}\right),\left(\begin{array}{cc}
0 & v \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & v \\
1+v & 1+v
\end{array}\right),\left(\begin{array}{cc}
0 & v \\
v & 1+v
\end{array}\right)
\end{gathered}
$$

Counting Codes over $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle$
Additive codes

Duality on the additive group of $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle$

	0	1	u	$1+u$
0	1	1	1	1
1	1	-1	1	-1
u	1	-1	1	-1
$1+u$	1	1	-1	-1

	00	01	11	10
00	0	0	0	0
01	0	1	0	1
11	0	1	0	1
10	0	0	1	1

Lemma

Let $\mathbf{v}, \mathbf{w} \in \mathbb{H}_{2}[u] /\left\langle u^{2}\right\rangle^{n}$. Then $[\mathbf{v}, \mathbf{w}]_{M}=1$ if and only if $[\psi(\mathbf{v}), \beta(\mathbf{w})]=0$.

Counting Codes over $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle$
Additive codes

Duality on the additive group of $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle$

	0	1	u	$1+u$
0	1	1	1	1
1	1	-1	1	-1
u	1	-1	1	-1
$1+u$	1	1	-1	-1

	00	01	11	10
00	0	0	0	0
01	0	1	0	1
11	0	1	0	1
10	0	0	1	1

Lemma

Let $\mathbf{v}, \mathbf{w} \in \mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle^{n}$. Then $[\mathrm{v}, \mathrm{w}]_{M}=1$ if and only if $[\psi(\mathrm{v}), \beta(\mathrm{w})]=0$.

Counting Codes over $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle$

Additive codes

Duality on the additive group of $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle$

	0	1	u	$1+u$
0	1	1	1	1
1	1	-1	1	-1
u	1	-1	1	-1
$1+u$	1	1	-1	-1

	00	01	11	10
00	0	0	0	0
01	0	1	0	1
11	0	1	0	1
10	0	0	1	1

Lemma
Let $\mathbf{v}, \mathbf{w} \in \mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle^{n}$. Then $[\mathbf{v}, \mathbf{w}]_{M}=1$ if and only if $[\psi(\mathbf{v}), \beta(\mathbf{w})]=0$.

Counting Codes over $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle$

Additive codes

Duality on the additive group of $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle$

	0	1	u	$1+u$
0	1	1	1	1
1	1	-1	1	-1
u	1	-1	1	-1
$1+u$	1	1	-1	-1

	00	01	11	10
00	0	0	0	0
01	0	1	0	1
11	0	1	0	1
10	0	0	1	1

Lemma
Let $\mathbf{v}, \mathbf{w} \in \mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle^{n}$. Then $[\mathbf{v}, \mathbf{w}]_{M}=1$ if and only if $[\psi(\mathbf{v}), \beta(\mathbf{w})]=0$.

Theorem

Let C be an additive code over $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle$. Then

$$
\operatorname{Hull}(\psi(C))=\psi\left(\operatorname{Hull}_{M_{E}}(C)\right) .
$$

Counting Codes over $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle$

Additive codes

Theorem

The number of additive codes over $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle$ of length n where $\operatorname{Hull}_{M_{E}}(C)$ has size 2^{k} is equal to the number of binary linear codes of length $2 n$ with hulls of dimension k.

Counting Codes over $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle$

Additive codes

Theorem

The number of additive codes over $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle$ of length n where $\operatorname{Hull}_{M_{E}}(C)$ has size 2^{k} is equal to the number of binary linear codes of length $2 n$ with hulls of dimension k.

Theorem

The number of additive codes over $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle, u^{2}=0$, of length n and size 2^{k} whose hull size is $2^{l}, l \leq k$, is

$$
\sum_{i=l}^{k}\left[\begin{array}{c}
2 n-2 i \\
k-i
\end{array}\right]\left[\begin{array}{c}
i \\
l
\end{array}\right](-1)^{i-l} 2^{(i-l}{ }_{2}^{(i-l} \sigma_{2 n, i},
$$

where $\sigma_{n, i}$ is the number of binary self-orthogonal codes of length n and dimension i.

Example

Let $n=2, k=2$ and $l=1 . \sigma_{4,1}=7$ and $\sigma_{4,2}=3$. The number of additive codes over $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle$ of length 2 and size 2^{2} whose hull has size 2^{1} is 12 :

$$
\begin{aligned}
& \left(\begin{array}{cc}
1+u & 0 \\
1 & 1+u
\end{array}\right),\left(\begin{array}{cc}
1+u & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
1+u & 0 \\
0 & u
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
1+u & 1+u
\end{array}\right) \\
& \left(\begin{array}{cc}
1 & 0 \\
1+u & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & u
\end{array}\right),\left(\begin{array}{cc}
0 & 1+u \\
u & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 1+u \\
1+u & 1
\end{array}\right) \\
& \left(\begin{array}{cc}
0 & 1+u \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
u & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
1+u & 1+u
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
1 & 1+u
\end{array}\right)
\end{aligned}
$$

Corollary for Additive Codes

Corollary

Let R be one of the rings $\mathbb{F}_{4}, \mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$ or $\mathbb{F}_{2}[u] /\left\langle u^{2}\right\rangle$. Then the number of additive codes over the ring R of length n and size 2^{k} whose hull size is 2^{l} is equal.

Results II

Number of Linear Codes
-Codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle=\mathbb{F}_{2}+v \mathbb{F}_{2}$

Counting Codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$

$$
\beta: \mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle \rightarrow \mathbb{F}_{2}^{2} \text { such that } \beta(a+b v)=(a, a+b) .
$$

- The ring $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$ is isomorphic to $\mathbb{F}_{2} \times \mathbb{F}_{2}$ via the Chinese Remainder Theorem.
- The map β is the inverse of CRT.
- Let $C=\beta^{-1}\left(C_{1}, C_{2}\right)$ be a code over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$, then C is denoted by $\operatorname{CRT}\left(C_{1}, C_{2}\right)$, where C_{1} and C_{2} are binary codes and C is uniquely determined by C_{1} and C_{2}.

Counting Codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$

$$
\beta: \mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle \rightarrow \mathbb{F}_{2}^{2} \text { such that } \beta(a+b v)=(a, a+b) \text {. }
$$

- The ring $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$ is isomorphic to $\mathbb{F}_{2} \times \mathbb{F}_{2}$ via the Chinese Remainder Theorem.
- The map β is the inverse of CRT.
- Let $C=\beta^{-1}\left(C_{1}, C_{2}\right)$ be a code over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$, then C is denoted by $\operatorname{CRT}\left(C_{1}, C_{2}\right)$, where C_{1} and C_{2} are binary codes and C is uniquely determined by C_{1} and C_{2}.

Counting Codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$

$$
\beta: \mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle \rightarrow \mathbb{F}_{2}^{2} \text { such that } \beta(a+b v)=(a, a+b) \text {. }
$$

- The ring $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$ is isomorphic to $\mathbb{F}_{2} \times \mathbb{F}_{2}$ via the Chinese Remainder Theorem.
- The map β is the inverse of CRT.
- Let $C=\beta^{-1}\left(C_{1}, C_{2}\right)$ be a code over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right)$, then C is denoted by $\operatorname{CRT}\left(C_{1}, C_{2}\right)$, where C_{1} and C_{2} are binary codes and C is uniquely determined by C_{1} and C_{2}.

Counting Codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$

$$
\beta: \mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle \rightarrow \mathbb{F}_{2}^{2} \text { such that } \beta(a+b v)=(a, a+b) \text {. }
$$

- The ring $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$ is isomorphic to $\mathbb{F}_{2} \times \mathbb{F}_{2}$ via the Chinese Remainder Theorem.
- The map β is the inverse of CRT.
- Let $C=\beta^{-1}\left(C_{1}, C_{2}\right)$ be a code over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$, then C is denoted by $\operatorname{CRT}\left(C_{1}, C_{2}\right)$, where C_{1} and C_{2} are binary codes and C is uniquely determined by C_{1} and C_{2}.

Counting Codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$

Linear codes

Theorem

Let $k \leq n / 2$ and $l \leq k$. The number of linear codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$ of length n and size 2^{k} where the size of the hull is 2^{l} is equal to

$$
\begin{aligned}
& \sum_{k=k_{1}+k_{2}} \sum_{l=l_{1}+l_{2}} \mathfrak{N}_{n, k_{1}, l_{1}} \cdot \mathfrak{N}_{n, k_{2}, l_{2}} \\
&= \sum_{k=k_{1}+k_{2}} \sum_{l=l_{1}+l_{2}}\left(\sum_{i=l_{1}}^{k_{1}}\left[\begin{array}{c}
n-2 i \\
k_{1}-i
\end{array}\right]\left[\begin{array}{c}
i \\
l_{1}
\end{array}\right](-1)^{i-l_{1}} 2^{\left(i-l_{1}\right)} \sigma_{n, i}\right) \\
& \cdot\left(\sum_{j=l_{2}}^{k_{2}}\left[\begin{array}{c}
n-2 j \\
k_{2}-j
\end{array}\right]\left[\begin{array}{c}
j \\
l_{2}
\end{array}\right](-1)^{j-l_{2}}\left({ }^{\left(j-l_{2}\right)} \sigma_{n, j}\right)\right.
\end{aligned}
$$

where $\sigma_{n, i}$ is the number of binary self-orthogonal codes of length n and size 2^{i}.

Counting Codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$

Linear codes

Table 1: The number of codes over $\mathbb{F}_{2}[v] /\left\langle v^{2}+v\right\rangle$ of length n and size 2^{k}, with a hull of size 2^{l}

n	k	1	Number	n	k	1	Number	n	k	1	Number
2	0	0	1	8	0	0	1	10	0	0	1
	1	0	4		1	0	256		1	0	1024
	1	1	2		1	1	254		1	1	1022
4	0	0	1		2	0	27264		2	0	436736
	1	0	16		2	1	40576		2	1	653824
	1	1	14		2	2	18775		2	2	304471
	2	0	104		3	0	1478656		3	0	94961664
	2	1	136		3	1	2499296		3	1	161622912
	2	2	55		3	2	1382976		3	2	90282240
6	0	0	1		3	3	338832		3	3	22346160
	1	0	64		4	0	40786432		4	0	$10^{10} \cdot 10520$
	1	1	62		4	1	65877504		4	1	$10^{10} \cdot 17134$
	2	0	1696		4	2	44123352		4	2	$10^{10} \cdot 11603$
	2	1	2464		4	3	13590432		4	3	$10^{9} \cdot 36314$
	2	2	1111		4	4	2104929		4	4	569194425
	3	0	22784						5	0	$10^{11} \cdot 51070$
	3	1	37432						5	1	$10^{11} \cdot 89580$
	3	2	199206						5	2	$10^{11} \cdot 63325$
	3	3	4680						5	3	$10^{11} \cdot 23516$
									5	4	$10^{10} \cdot 43198$
									5	5	$10^{9} \cdot 42609$

Appendix

For Further Reading i

围
E.F. Assmus, J.D. Key.

Affine and projective planes
Discrete Math., 83, 161-187, 1990.
Q S.T. Dougherty.
Algebraic Coding Theory Over Finite Commutative Rings
SpringerBriefs in Mathematics. Springer, Cham, 2017, ISBN:
978-3-319-59805-5; 978-3-319-59806-2.
囯 S.T. Dougherty.
Nets and their codes
Des., Codes and Cryptog., 3, 315-331, 1993.
R S.T. Dougherty.
A soding-theoretic solution to the 36 officer problem
Des., Codes and Cryptog., 4, 123-128, 1994.

For Further Reading ii

R
S.T. Dougherty, M. Harada and P. Solé.

Self-dual codes over rings and the chinese remainder theorem Hokkaido Math. J., 28, 253-283, 1999.
\square S.T. Dougherty and E. Salturk.

Counting codes over rings
Designs, Codes and Crypt.73, 151-165, 2014.
E F.J. MacWilliams, N.J.A Sloane.
The Theory Of Error Correcting Codes.
North-Holland Pub. Co., 1977.
旺
V. Pless.

The number of isotropic subspaces in a finite geometry Rend. Sc. Fis. Mat. e Nat., Accad. Naz. Lincie, Ser. VIII, 39, 418-421, 1965.

For Further Reading iii

V. Pless.

On the uniqueness of the Golay codes
J. Combin. Theory., 5, 215-228, 1968.

囯 B. Segre.
Le geometrie di Galois
Annali di Mat. Pura Appl., Ser. 4a, 49, 1-96, 1959.
R. Nendrier.

On the dimension of the hull
SIAM J. Discrete Math., 10, No. 2, 282-293, 1997.
N.J.A. Sloane.

The on-line encyclopedia of integer sequences (OEIS)
Available online at https://oeis.org/.
圊 J. Wood.
Duality for modules over finite rings and applications to coding theory Amer. J. Math. 121, 555-575, 1999.

For Further Reading iv

易
S. Zhu, Y. Wang and M. Shi.

Some results on cyclic codes over $\mathbb{F}_{2}+v \mathbb{F}_{2}$
IEEE Transactions on Information Theory, 56, No. 4, 1680-1684, 2010.

Thank you

Thank you for your attention!

