

Counting Codes Over Rings With A Given Hull

Esengül Saltürk

Atlas University, İstanbul, Türkiye

joint work with Steven T. Dougherty University of Scranton, USA

Noncommutative Rings and Their Applications VIII, Université d'Artois, Lens-France August 30, 2023 **Problem.** Let *R* be a ring of order 4. Then what is the number of linear (additive) codes over *R* containing a hull of given size?

When *R* is a field, the number for linear codes is given by Sendrier[11].

Problem. Let *R* be a ring of order 4. Then what is the number of linear (additive) codes over *R* containing a hull of given size?

When *R* is a field, the number for linear codes is given by Sendrier[11].

Definitions

Codes over Rings *Linear codes*

• A linear code over a ring R is a submodule of R^n .

Euclidean inner product

$$[\mathbf{v},\mathbf{w}]=\sum v_iw_i.$$

The orthogonal of *C*

$$C^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n | [\mathbf{x}, \mathbf{y}] = 0 \text{ for all } y \in \mathbb{C} \}.$$

If *R* is a finite commutative Frobenius ring, then $|C||C^{\perp}| = |R|^n$, by Wood[13].

Codes over Rings *Linear codes*

• A linear code over a ring R is a submodule of R^n .

Euclidean inner product

$$[\mathbf{v},\mathbf{w}]=\sum v_iw_i.$$

The orthogonal of C

$$C^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n | [\mathbf{x}, \mathbf{y}] = 0 \text{ for all } y \in \mathbb{C} \}.$$

If *R* is a finite commutative Frobenius ring, then $|C||C^{\perp}| = |R|^n$, by Wood[13].

The Hull of a linear code C is

 $Hull(C) = C \cap C^{\perp}.$

- So, it is a self-orthogonal code.
- The hull satisfies $1 \leq |Hull(C)| \leq \sqrt{|R|^n}$.

Important for. Determining the complexity of algorithms for permutation equivalence of linear codes and the automorphism group of a linear code.

These algorithms are very effective if the size of the hull is small.

The Hull of a linear code C is

 $Hull(C) = C \cap C^{\perp}.$

- So, it is a self-orthogonal code.
- The hull satisfies $1 \le |Hull(C)| \le \sqrt{|R|^n}$.

Important for. Determining the complexity of algorithms for permutation equivalence of linear codes and the automorphism group of a linear code.

These algorithms are very effective if the size of the hull is small.

The Hull of a linear code C is

 $Hull(C) = C \cap C^{\perp}.$

- So, it is a self-orthogonal code.
- The hull satisfies $1 \le |Hull(C)| \le \sqrt{|R|^n}$.

Important for. Determining the complexity of algorithms for permutation equivalence of linear codes and the automorphism group of a linear code.

These algorithms are very effective if the size of the hull is small.

- It was first introduced in the work of Assmus and Key to study the codes of finite projective and affine planes, 1990, [1].
- Dougherty used the hull for finite nets, 1993, 1994, [3], [4].
- Sendrier, calculated the number of distinct linear codes over finite fields which have a hull of given dimension were given. He also proved that the expected dimension of the hull of a linear code is a constant when the parameters *n* and *k* go to infinity, 1997, [11].

Codes over Rings *Additive codes*

• An additive code over a ring R is an additive subgroup of R^n .

- Let G be a group. Then the set of all characters of G is denoted by \widehat{G} .
- Then $\phi: G \to \widehat{G}$ is an isomorphism, with $\phi(g_i) = \chi_{g_i}, g_i \in G$.

Let *C* be a code over *G* with a duality *M* (a group isomorphism)

$$[\mathbf{g},\mathbf{c}]_M=\prod\chi_{g_i}(c_i).$$

The orthogonal of C

$$C^M = \{(g_1, g_2, \dots, g_n) | \prod_{i=1}^n \chi_{g_i}(c_i) = 1 \text{ for all } (c_1, \dots, c_n) \in C \}$$

- An additive code over a ring R is an additive subgroup of R^n .
- Let G be a group. Then the set of all characters of G is denoted by \widehat{G} .
- Then $\phi: G \to \widehat{G}$ is an isomorphism, with $\phi(g_i) = \chi_{g_i}, g_i \in G$.

Let *C* be a code over *G* with a duality *M* (a group isomorphism)

$$[\mathbf{g},\mathbf{c}]_M=\prod\chi_{g_i}(c_i).$$

The orthogonal of C

$$C^M = \{(g_1, g_2, \dots, g_n) | \prod_{i=1}^n \chi_{g_i}(c_i) = 1 \text{ for all } (c_1, \dots, c_n) \in C \}$$

- An additive code over a ring R is an additive subgroup of R^n .
- Let G be a group. Then the set of all characters of G is denoted by \widehat{G} .
- Then $\phi: G \to \widehat{G}$ is an isomorphism, with $\phi(g_i) = \chi_{g_i}, g_i \in G$.

Let *C* be a code over *G* with a duality M (a group isomorphism)

$$[\mathbf{g},\mathbf{c}]_M=\prod\chi_{g_i}(c_i).$$

The orthogonal of C

$$C^M = \{(g_1, g_2, \dots, g_n) | \prod_{i=1}^n \chi_{g_i}(c_i) = 1 \text{ for all } (c_1, \dots, c_n) \in C \}$$

- An additive code over a ring R is an additive subgroup of R^n .
- Let G be a group. Then the set of all characters of G is denoted by \widehat{G} .
- Then $\phi: G \to \widehat{G}$ is an isomorphism, with $\phi(g_i) = \chi_{g_i}, g_i \in G$.

Let *C* be a code over *G* with a duality M (a group isomorphism)

$$[\mathbf{g},\mathbf{c}]_M=\prod\chi_{g_i}(c_i).$$

The orthogonal of C

$$C^M = \{(g_1, g_2, \dots, g_n) | \prod_{i=1}^n \chi_{g_i}(c_i) = 1 \text{ for all } (c_1, \dots, c_n) \in C \}$$

Hull of a Code Additive codes

The Hull of an additive code C is

 $Hull_M(C) = C \cap C^M$.

Rings of order 4

Rings and Gray maps

Rings: \mathbb{F}_4 , \mathbb{Z}_4 , $\mathbb{F}_2[u]/\langle u^2 \rangle$, $\mathbb{F}_2[v]/\langle v^2 + v \rangle$.

• Codes over \mathbb{F}_4

Generating matrix $(I_k | A)$.

 $\alpha : \mathbb{F}_4 \to \mathbb{F}_2^2$ such that $\alpha(a+b\omega) = (a,b)$.

 $\alpha(C^{\perp}) = \alpha(C)^{\perp}.$

• Codes over \mathbb{Z}_4

Generating matrix
$$G = \begin{pmatrix} I_{k_0} & A_{0,1} & A_{0,2} \\ 0 & 2I_{k_1} & 2A_{1,2} \end{pmatrix}$$

Type: (k_0, k_1)

Gray map: $\phi : \mathbb{Z}_4 \to \mathbb{F}_2^2$ such that $\phi(a+2b) = (b, a+b)$ (non-linear)

Rings and Gray maps

Rings: \mathbb{F}_4 , \mathbb{Z}_4 , $\mathbb{F}_2[u]/\langle u^2 \rangle$, $\mathbb{F}_2[v]/\langle v^2 + v \rangle$.

• Codes over \mathbb{F}_4

Generating matrix $(I_k | A)$.

 $\alpha : \mathbb{F}_4 \to \mathbb{F}_2^2$ such that $\alpha(a+b\omega) = (a,b)$.

 $\alpha(C^{\perp}) = \alpha(C)^{\perp}.$

• Codes over \mathbb{Z}_4

Generating matrix
$$G = \begin{pmatrix} I_{k_0} & A_{0,1} & A_{0,2} \\ 0 & 2I_{k_1} & 2A_{1,2} \end{pmatrix}$$

Type: (k_0, k_1)

Gray map: $\phi : \mathbb{Z}_4 \to \mathbb{F}_2^2$ such that $\phi(a+2b) = (b, a+b)$ (non-linear)

Rings: \mathbb{F}_4 , \mathbb{Z}_4 , $\mathbb{F}_2[u]/\langle u^2 \rangle$, $\mathbb{F}_2[v]/\langle v^2 + v \rangle$.

• Codes over \mathbb{F}_4

Generating matrix $(I_k | A)$.

 $\alpha : \mathbb{F}_4 \to \mathbb{F}_2^2$ such that $\alpha(a+b\omega) = (a,b)$.

 $\alpha(C^{\scriptscriptstyle \perp}) = \alpha(C)^{\scriptscriptstyle \perp}.$

• Codes over \mathbb{Z}_4

Generating matrix
$$G = \begin{pmatrix} I_{k_0} & A_{0,1} & A_{0,2} \\ 0 & 2I_{k_1} & 2A_{1,2} \end{pmatrix}$$
.

Type: (k_0, k_1)

Gray map: $\phi : \mathbb{Z}_4 \to \mathbb{F}_2^2$ such that $\phi(a+2b) = (b, a+b)$ (non-linear)

Rings and Gray maps

• Codes over $\mathbb{F}_2[u]/\langle u^2 \rangle = \mathbb{F}_2 + u\mathbb{F}_2$

Generating matrix
$$G = \begin{pmatrix} I_{k_0} & A_{0,1} & A_{0,2} \\ 0 & uI_{k_1} & uA_{1,2} \end{pmatrix}$$

Type: (k_0, k_1)

Gray map: $\psi : \mathbb{F}_2[u]/\langle u^2 \rangle \to \mathbb{F}_2^2$ such that $\psi(a+bu) = (b, a+b)$ (linear) $\psi(C^{\perp}) = \psi(C)^{\perp}$.

• Codes over $\mathbb{F}_2[v]/\langle v^2 + v \rangle = \mathbb{F}_2 + v\mathbb{F}_2$

No generating matrix in standard form. No type.

Gray map: $\beta : \mathbb{F}_2[v]/\langle v^2 + v \rangle \to \mathbb{F}_2^2$ such that $\beta(a+bv) = (a, a+b)$. (isomorphism)

$$\beta(C^{\perp}) = \beta(C)^{\perp}.$$

Rings and Gray maps

• Codes over $\mathbb{F}_2[u]/\langle u^2 \rangle = \mathbb{F}_2 + u\mathbb{F}_2$

Generating matrix
$$G = \begin{pmatrix} I_{k_0} & A_{0,1} & A_{0,2} \\ 0 & uI_{k_1} & uA_{1,2} \end{pmatrix}$$

Type: (k_0, k_1)

Gray map: $\psi : \mathbb{F}_2[u]/\langle u^2 \rangle \to \mathbb{F}_2^2$ such that $\psi(a+bu) = (b, a+b)$ (linear)

$$\psi(C^{\perp}) = \psi(C)^{\perp}.$$

• Codes over $\mathbb{F}_2[v]/\langle v^2 + v \rangle = \mathbb{F}_2 + v\mathbb{F}_2$

No generating matrix in standard form. No type.

Gray map: $\beta : \mathbb{F}_2[v]/\langle v^2 + v \rangle \to \mathbb{F}_2^2$ such that $\beta(a + bv) = (a, a + b)$. (isomorphism)

$$\beta(C^{\perp}) = \beta(C)^{\perp}.$$

Number of Codes

Number of Codes over Fields

Gaussian binomials

The number of subcodes of dimension k of a code of dimension n is given by a well-known formula:

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q} = \frac{(q^{n}-1)(q^{n-1}-1)\cdots(q^{n-k+1}-1)}{(q^{k}-1)(q^{k-1}-1)\cdots(q-1)}.$$

Number of Codes over Rings

Gaussian multinomials

Theorem

[6] Let *R* be one of the rings \mathbb{Z}_4 or $\mathbb{F}_2 + u\mathbb{F}_2$, $u^2 = 0$, with type (k_0, k_1) , with maximal ideal |R/m| = q = 2 and nilpotency e = 2. The number of linear codes over *R* is given by the following formula,

$$\begin{bmatrix} n\\ k_0, k_1 \end{bmatrix}_{q,e} = \begin{bmatrix} n\\ k_0, k_1 \end{bmatrix}_{2,2} = \frac{\prod_{i=0}^{k_0-1} (2^{2n} - 2^{n+i}) \prod_{j=0}^{k_1-1} (2^n - 2^{k_0+j})}{\prod_{i=0}^{k_0-1} (2^{2k_0+k_1} - 2^{k_0+k_1+i}) \prod_{j=0}^{k_1-1} (2^{k_0+k_1} - 2^{k_0+j})}$$

Theorem

[8, 9, 10] Let n and q be positive even integers and $k \le n/2$. The number of self-orthogonal codes over \mathbb{F}_q of length n and dimension k is

$$\sigma_{n,k} = \frac{q^{n-k}-1}{q^n-1} \prod_{i=1}^k \frac{q^{n-2i+2}-1}{q^i-1}.$$

Lemma

[11] Let C be a linear code over \mathbb{F}_q of length n and dimension k. The number of self-orthogonal codes V of length n and dimension l such that $V \subseteq Hull(C)$ is the Gaussian binomial $\begin{bmatrix} dim(Hull(C)) \\ l \end{bmatrix}_a$.

Lemma

[11] Let V be a self-orthogonal code over \mathbb{F}_q of length n and dimension l. The number of linear codes C over \mathbb{F}_q of length n and dimension k such that $V \subseteq Hull(C)$ is $\begin{bmatrix} n-2l \\ k-l \end{bmatrix}_q$.

Theorem

[11] Let $\sigma_{n,i}$ denote the number of self-orthogonal codes over \mathbb{F}_q of length n and dimension i. Let $k \leq n/2$ and $l \leq k$. The number of linear codes over \mathbb{F}_q of length n and dimension k where the dimension of the hull is l is

$$\sum_{i=l}^{k} \begin{bmatrix} n-2i \\ k-i \end{bmatrix}_{q} \begin{bmatrix} i \\ l \end{bmatrix}_{q} (-1)^{i-l} q^{\binom{i-l}{2}} \sigma_{n,i}.$$

Results I Number of Additive Codes

Additive codes

	M_E	0	1	ω	$1 + \omega$		00	10	01	11
	0	1	1	1	1	00	0	0	0	0
	1	1	-1	1	-1	10	0	1	0	1
	ω	1	1	-1	-1	01	0	0	1	1
1	$+\omega$	1	-1	-1	1	11	0	1	1	0

Duality on the additive group of \mathbb{F}_4

Lemma Let $\mathbf{x}, \mathbf{y} \in \mathbb{F}_4^n$. Then $[\mathbf{v}, \mathbf{w}]_{M_F} = 1$ if and only if $[\alpha(\mathbf{v}), \alpha(\mathbf{w})] = 0$.

Theorem Let C be an additive code over \mathbb{F}_4 . Then

Additive codes

M_E	0	1	ω	$1 + \omega$		00	10	01	11
0	1	1	1	1	00	0	0	0	0
1	1	-1	1	-1	10	0	1	0	1
ω	1	1	-1	-1	01	0	0	1	1
$1 + \omega$	1	-1	-1	1	11	0	1	1	0

Duality on the additive group of \mathbb{F}_4

Lemma Let $\mathbf{x}, \mathbf{y} \in \mathbb{F}_4^n$. Then $[\mathbf{v}, \mathbf{w}]_{M_F} = 1$ if and only if $[\alpha(\mathbf{v}), \alpha(\mathbf{w})] = 0$.

Theorem Let C be an additive code over \mathbb{F}_4 . Then

Additive codes

M_E	0	1	ω	$1 + \omega$		00	10	01	11
0	1	1	1	1	00	0	0	0	0
1	1	-1	1	-1	10	0	1	0	1
ω	1	1	-1	-1	01	0	0	1	1
$1 + \omega$	1	-1	-1	1	11	0	1	1	0

Duality on the additive group of \mathbb{F}_4

Lemma Let $\mathbf{x}, \mathbf{y} \in \mathbb{F}_4^n$. Then $[\mathbf{v}, \mathbf{w}]_{M_F} = 1$ if and only if $[\alpha(\mathbf{v}), \alpha(\mathbf{w})] = 0$.

Theorem *Let C be an additive code over* \mathbb{F}_4 *. Then*

Additive codes

M_E	0	1	ω	$1 + \omega$		00	10	01	11
0	1	1	1	1	00	0	0	0	0
1	1	-1	1	-1	10	0	1	0	1
ω	1	1	-1	-1	01	0	0	1	1
$1 + \omega$	1	-1	-1	1	11	0	1	1	0

Duality on the additive group of \mathbb{F}_4

Lemma Let $\mathbf{x}, \mathbf{y} \in \mathbb{F}_4^n$. Then $[\mathbf{v}, \mathbf{w}]_{M_F} = 1$ if and only if $[\alpha(\mathbf{v}), \alpha(\mathbf{w})] = 0$.

Theorem *Let C be an additive code over* \mathbb{F}_4 *. Then*

Additive codes

Theorem

The number of additive codes over \mathbb{F}_4 of length *n* where $Hull_{M_E}(C)$ has size 2^k is equal to the number of binary linear codes of length 2*n* with hulls of dimension *k*.

Theorem

The number of additive codes over \mathbb{F}_4 of length n and size 2^k whose hull with respect to M_E has size 2^l with $l \le k$ and $k \le 2n/2$ is

$$\sum_{i=l}^{k} \begin{bmatrix} 2n-2i \\ k-i \end{bmatrix}_{2} \begin{bmatrix} i \\ l \end{bmatrix}_{2} (-1)^{i-l} 2^{\binom{i-l}{2}} \sigma_{2n,i},$$

where $\sigma_{n,i}$ is the number of binary self-orthogonal codes of length n and dimension i.

Additive codes

Theorem

The number of additive codes over \mathbb{F}_4 of length *n* where $Hull_{M_E}(C)$ has size 2^k is equal to the number of binary linear codes of length 2*n* with hulls of dimension *k*.

Theorem

The number of additive codes over \mathbb{F}_4 of length n and size 2^k whose hull with respect to M_E has size 2^l with $l \le k$ and $k \le 2n/2$ is

$$\sum_{i=l}^{k} \begin{bmatrix} 2n-2i \\ k-i \end{bmatrix}_{2} \begin{bmatrix} i \\ l \end{bmatrix}_{2} (-1)^{i-l} 2^{\binom{i-l}{2}} \sigma_{2n,i},$$

where $\sigma_{n,i}$ is the number of binary self-orthogonal codes of length n and dimension i.

Let n = 2, k = 2 and l = 1. $\sigma_{4,1} = 7$ and $\sigma_{4,2} = 3$. The number of additive codes over $\mathbb{F}_4 = \{0, 1, w, 1 + w\}$ of length 2 and size 2^2 whose hull has size 2^1 is 12:

$$\begin{pmatrix} 1 & 0 \\ w & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ w & w \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1+w \end{pmatrix}, \begin{pmatrix} w & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} w & 0 \\ 1 & w \end{pmatrix}, \begin{pmatrix} w & 0 \\ 0 & 1+w \end{pmatrix},$$
$$\begin{pmatrix} 0 & 1 \\ 1+w & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & w \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ w & w \end{pmatrix}, \begin{pmatrix} 0 & w \\ 1+w & 0 \end{pmatrix}, \begin{pmatrix} 0 & w \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & w \\ w & 1 \end{pmatrix}.$$

Theorem

The ratio of the number of linear codes over \mathbb{F}_4 of length n and dimension k and the number of additive codes over \mathbb{F}_4 of length n and size 4^k goes to 0 as n goes to infinity:

$$\lim_{n \to \infty} \frac{ \begin{bmatrix} n \\ k \end{bmatrix}_4 }{ \begin{bmatrix} 2n \\ 2k \end{bmatrix}_2 } = 0.$$

Theorem

The ratio of the number of linear codes over \mathbb{F}_4 of length n and dimension k and the number of additive codes over \mathbb{F}_4 of length n and size 4^k goes to 0 as n goes to infinity:

$$\lim_{n \to \infty} \frac{\left[\begin{array}{c}n\\k\end{array}\right]_4}{\left[\begin{array}{c}2n\\2k\end{array}\right]_2} = 0.$$

Theorem

The ratio of the number of linear codes over \mathbb{F}_4 of length n and dimension k with a given hull of dimension l and the number of additive codes over \mathbb{F}_4 of length n and size 4^k whose hull with respect to M_E has size 4^l , $l \leq k$, goes to 0 as n goes to infinity:

$$\lim_{n \to \infty} \frac{\sum_{i=l}^{k} \begin{bmatrix} n-2i \\ k-i \end{bmatrix}_{4} \begin{bmatrix} i \\ l \end{bmatrix}_{4} (-1)^{i-l} 4^{\binom{i-l}{2}} \sigma_{n,i}}{\sum_{j=l}^{k} \begin{bmatrix} 2n-4j \\ 2k-2j \end{bmatrix}_{2} \begin{bmatrix} 2j \\ 2l \end{bmatrix}_{2} (-1)^{2j-2l} 2^{\binom{2j-2l}{2}} \sigma_{2n,2j}} = 0$$

Theorem

The ratio of the number of linear codes over \mathbb{F}_4 of length n and dimension k with a given hull of dimension l and the number of additive codes over \mathbb{F}_4 of length n and size 4^k whose hull with respect to M_E has size 4^l , $l \leq k$, goes to 0 as n goes to infinity:

$$\lim_{n \to \infty} \frac{\sum_{i=l}^{k} \begin{bmatrix} n-2i \\ k-i \end{bmatrix}_{4} \begin{bmatrix} i \\ l \end{bmatrix}_{4} (-1)^{i-l} 4^{\binom{i-l}{2}} \sigma_{n,i}}{\sum_{j=l}^{k} \begin{bmatrix} 2n-4j \\ 2k-2j \end{bmatrix}_{2} \begin{bmatrix} 2j \\ 2l \end{bmatrix}_{2} (-1)^{2j-2l} 2^{\binom{2j-2l}{2}} \sigma_{2n,2j}} = 0.$$

 M_E 0
 1
 v 1 + v 0
 11
 01
 10

 0
 1
 1
 1
 1
 0
 0
 0
 0
 0

 1
 1
 1
 -1
 -1
 11
 0
 0
 1
 1

 v 1
 -1
 -1
 1
 01
 0
 1
 1

 t + v 1
 -1
 1
 -1
 10
 0
 1
 0

Duality on the additive group of $\mathbb{F}_2[v]/\langle v^2 + v \rangle$

Lemma

Let $\mathbf{v}, \mathbf{w} \in \mathbb{F}_2[v]/\langle v^2 + v \rangle^n$. Then $[\mathbf{v}, \mathbf{w}]_M = 1$ if and only if $[\beta(\mathbf{v}), \beta(\mathbf{w})] = 0$.

Theorem Let *C* be an additive code over $\mathbb{F}_2[v]/\langle v^2 + v \rangle$. Then

Duality on the additive group of $\mathbb{F}_2[v]/\langle v^2 + v \rangle$

M_E	0	1	v	1 + v		0	11	01	10
0	1	1	1	1	0	0	0	0	0
1	1	1	-1	-1	11	0	0	1	1
v	1	-1	-1	1	01	0	1	1	0
1 + v	1	-1	1	-1	10	0	1	0	1

Lemma

Let $\mathbf{v}, \mathbf{w} \in \mathbb{F}_2[v]/(v^2 + v)^n$. Then $[\mathbf{v}, \mathbf{w}]_M = 1$ if and only if $[\beta(\mathbf{v}), \beta(\mathbf{w})] = 0$.

Theorem Let *C* be an additive code over $\mathbb{F}_2[v]/(v^2 + v)$. Then

Duality on the additive group of $\mathbb{F}_2[v]/\langle v^2 + v \rangle$

M_E	0	1	V	1 + v		0	11	01	10
0	1	1	1	1	0	0	0	0	0
1	1	1	-1	-1	11	0	0	1	1
V	1	-1	-1	1	01	0	1	1	0
1 + v	1	-1	1	-1	10	0	1	0	1

Lemma

Let $\mathbf{v}, \mathbf{w} \in \mathbb{F}_2[v]/\langle v^2 + v \rangle^n$. Then $[\mathbf{v}, \mathbf{w}]_M = 1$ if and only if $[\beta(\mathbf{v}), \beta(\mathbf{w})] = 0$.

Theorem Let *C* be an additive code over $\mathbb{F}_2[v]/\langle v^2 + v \rangle$. Then

Duality on the additive group of $\mathbb{F}_2[v]/\langle v^2 + v \rangle$

M_E	0	1	V	1 + v		0	11	01	10
0	1	1	1	1	0	0	0	0	0
1	1	1	-1	-1	11	0	0	1	1
V	1	-1	-1	1	01	0	1	1	0
1 + v	1	-1	1	-1	10	0	1	0	1

Lemma

Let $\mathbf{v}, \mathbf{w} \in \mathbb{F}_2[v]/\langle v^2 + v \rangle^n$. Then $[\mathbf{v}, \mathbf{w}]_M = 1$ if and only if $[\beta(\mathbf{v}), \beta(\mathbf{w})] = 0$.

Theorem Let *C* be an additive code over $\mathbb{F}_2[v]/\langle v^2 + v \rangle$. Then

Theorem

The number of additive codes over $\mathbb{F}_2[v]/\langle v^2 + v \rangle$ of length *n* where $Hull_{M_E}(C)$ has size 2^k is equal to the number of binary linear codes of length 2*n* with hulls of dimension *k*.

Theorem

The number of additive codes over $\mathbb{F}_2[v]/\langle v^2 + v \rangle$ of length n and size 2^k whose hull size is 2^l , $l \leq k$, is

$$\sum_{i=l}^{k} \begin{bmatrix} 2n-2i \\ k-i \end{bmatrix}_{2} \begin{bmatrix} i \\ l \end{bmatrix}_{2} (-1)^{i-l} 2^{\binom{i-l}{2}} \sigma_{2n,i},$$

where $\sigma_{n,i}$ is the number of binary self-orthogonal codes of length n and dimension i.

Theorem

The number of additive codes over $\mathbb{F}_2[v]/\langle v^2 + v \rangle$ of length *n* where $Hull_{M_E}(C)$ has size 2^k is equal to the number of binary linear codes of length 2*n* with hulls of dimension *k*.

Theorem

The number of additive codes over $\mathbb{F}_2[v]/\langle v^2 + v \rangle$ of length n and size 2^k whose hull size is 2^l , $l \le k$, is

$$\sum_{i=l}^{k} \begin{bmatrix} 2n-2i \\ k-i \end{bmatrix}_{2} \begin{bmatrix} i \\ l \end{bmatrix}_{2} (-1)^{i-l} 2^{\binom{i-l}{2}} \sigma_{2n,i},$$

where $\sigma_{n,i}$ is the number of binary self-orthogonal codes of length n and dimension i.

Example

Let n = 2, k = 2 and l = 1. $\sigma_{4,1} = 7$ and $\sigma_{4,2} = 3$. The number of additive codes over $\mathbb{F}_2[v]/\langle v^2 + v \rangle = \{0, 1, v, 1 + v\}, v^2 = v$, of length 2 and size 2^2 whose hull has size 2^1 is 12:

$$\begin{pmatrix} 1+v & 0\\ v & 1+v \end{pmatrix}, \begin{pmatrix} 1+v & 0\\ v & v \end{pmatrix}, \begin{pmatrix} 1+v & 0\\ 0 & 1 \end{pmatrix}, \begin{pmatrix} v & 0\\ 1+v & 1+v \end{pmatrix}, \begin{pmatrix} v & 0\\ 1+v & v \end{pmatrix}, \begin{pmatrix} v & 0\\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1+v\\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1+v\\ 1+v & v \end{pmatrix}, \begin{pmatrix} 0 & 1+v\\ v & v \end{pmatrix}, \begin{pmatrix} 0 & v\\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & v\\ 1+v & 1+v \end{pmatrix}, \begin{pmatrix} 0 & v\\ v & 1+v \end{pmatrix}.$$

	0	1	и	1 + u		00	01	11	10
0	1	1	1	1	00	0	0	0	0
1	1	-1	1	-1	01	0	1	0	1
и	1	-1	1	-1	11	0	1	0	1
1 + <i>u</i>	1	1	-1	-1	10	0	0	1	1

Duality on the additive group of $\mathbb{F}_2[u]/\langle u^2 \rangle$

Lemma Let $\mathbf{v}, \mathbf{w} \in \mathbb{F}_2[u]/\langle u^2 \rangle^n$. Then $[\mathbf{v}, \mathbf{w}]_M = 1$ if and only if $[\psi(\mathbf{v}), \beta(\mathbf{w})] = 0$.

Theorem Let C be an additive code over $\mathbb{F}_2[u]/\langle u^2 \rangle$. Then

	0	1	и	1 + u		00	01	11	10
0	1	1	1	1	00	0	0	0	0
1	1	-1	1	-1	01	0	1	0	1
и	1	-1	1	-1	11	0	1	0	1
1 + u	1	1	-1	-1	10	0	0	1	1

Duality on the additive group of $\mathbb{F}_2[u]/\langle u^2 \rangle$

Lemma Let $\mathbf{v}, \mathbf{w} \in \mathbb{F}_2[u]/\langle u^2 \rangle^n$. Then $[\mathbf{v}, \mathbf{w}]_M = 1$ if and only if $[\psi(\mathbf{v}), \beta(\mathbf{w})] = 0$.

Theorem Let C be an additive code over $\mathbb{F}_2[u]/\langle u^2 \rangle$. Then

		0	1	и	1 + u		00	01	11	10
()	1	1	1	1	00	0	0	0	0
1	l	1	-1	1	-1	01	0	1	0	1
ι	ı	1	-1	1	-1	11	0	1	0	1
1 -	<i>⊢ u</i>	1	1	-1	-1	10	0	0	1	1

Duality on the additive group of $\mathbb{F}_2[u]/\langle u^2 \rangle$

Lemma

Let $\mathbf{v}, \mathbf{w} \in \mathbb{F}_2[u]/\langle u^2 \rangle^n$. Then $[\mathbf{v}, \mathbf{w}]_M = 1$ if and only if $[\psi(\mathbf{v}), \beta(\mathbf{w})] = 0$.

Theorem Let C be an additive code over $\mathbb{F}_2[u]/\langle u^2 \rangle$. Then

	0	1	и	1 + u		00	01	11	10
0	1	1	1	1	00	0	0	0	0
1	1	-1	1	-1	01	0	1	0	1
и	1	-1	1	-1	11	0	1	0	1
1 + u	1	1	-1	-1	10	0	0	1	1

Duality on the additive group of $\mathbb{F}_2[u]/\langle u^2 \rangle$

Lemma

Let $\mathbf{v}, \mathbf{w} \in \mathbb{F}_2[u]/\langle u^2 \rangle^n$. Then $[\mathbf{v}, \mathbf{w}]_M = 1$ if and only if $[\psi(\mathbf{v}), \beta(\mathbf{w})] = 0$.

Theorem

Let C be an additive code over $\mathbb{F}_2[u]/\langle u^2 \rangle$ *. Then*

Theorem

The number of additive codes over $\mathbb{F}_2[u]/\langle u^2 \rangle$ of length *n* where $Hull_{M_E}(C)$ has size 2^k is equal to the number of binary linear codes of length 2*n* with hulls of dimension *k*.

Theorem

The number of additive codes over $\mathbb{F}_2[u]/\langle u^2 \rangle$, $u^2 = 0$, of length n and size 2^k whose hull size is 2^l , $l \le k$, is

$$\sum_{i=l}^{k} \begin{bmatrix} 2n-2i \\ k-i \end{bmatrix} \begin{bmatrix} i \\ l \end{bmatrix} (-1)^{i-l} 2^{\binom{i-l}{2}} \sigma_{2n,i},$$

where $\sigma_{n,i}$ is the number of binary self-orthogonal codes of length n and dimension i.

Theorem

The number of additive codes over $\mathbb{F}_2[u]/\langle u^2 \rangle$ of length *n* where $Hull_{M_E}(C)$ has size 2^k is equal to the number of binary linear codes of length 2*n* with hulls of dimension *k*.

Theorem

The number of additive codes over $\mathbb{F}_2[u]/\langle u^2 \rangle$, $u^2 = 0$, of length *n* and size 2^k whose hull size is 2^l , $l \le k$, is

$$\sum_{i=l}^{k} \begin{bmatrix} 2n-2i \\ k-i \end{bmatrix} \begin{bmatrix} i \\ l \end{bmatrix} (-1)^{i-l} 2^{\binom{i-l}{2}} \sigma_{2n,i},$$

where $\sigma_{n,i}$ is the number of binary self-orthogonal codes of length *n* and dimension *i*.

Example

Let n = 2, k = 2 and l = 1. $\sigma_{4,1} = 7$ and $\sigma_{4,2} = 3$. The number of additive codes over $\mathbb{F}_2[u]/\langle u^2 \rangle$ of length 2 and size 2^2 whose hull has size 2^1 is 12:

$$\begin{pmatrix} 1+u & 0 \\ 1 & 1+u \end{pmatrix}, \begin{pmatrix} 1+u & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1+u & 0 \\ 0 & u \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1+u & 1+u \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1+u & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & u \end{pmatrix}, \begin{pmatrix} 0 & 1+u \\ u & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1+u \\ 1+u & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1+u \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ u & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1+u & 1+u \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1+u \end{pmatrix}.$$

Corollary

Let *R* be one of the rings \mathbb{F}_4 , $\mathbb{F}_2[v]/\langle v^2 + v \rangle$ or $\mathbb{F}_2[u]/\langle u^2 \rangle$. Then the number of additive codes over the ring *R* of length *n* and size 2^k whose hull size is 2^l is equal.

Results II Number of Linear Codes -Codes over $\mathbb{F}_2[v]/\langle v^2 + v \rangle = \mathbb{F}_2 + v\mathbb{F}_2$

$$\beta : \mathbb{F}_2[v]/\langle v^2 + v \rangle \to \mathbb{F}_2^2$$
 such that $\beta(a+bv) = (a, a+b)$.

- The ring $\mathbb{F}_2[v]/\langle v^2 + v \rangle$ is isomorphic to $\mathbb{F}_2 \times \mathbb{F}_2$ via the Chinese Remainder Theorem.
- The map β is the inverse of CRT.
- Let $C = \beta^{-1}(C_1, C_2)$ be a code over $\mathbb{F}_2[\nu]/\langle \nu^2 + \nu \rangle$, then *C* is denoted by $CRT(C_1, C_2)$, where C_1 and C_2 are binary codes and *C* is uniquely determined by C_1 and C_2 .

$$\beta : \mathbb{F}_2[v]/\langle v^2 + v \rangle \to \mathbb{F}_2^2$$
 such that $\beta(a+bv) = (a, a+b)$.

- The ring $\mathbb{F}_2[v]/\langle v^2 + v \rangle$ is isomorphic to $\mathbb{F}_2 \times \mathbb{F}_2$ via the Chinese Remainder Theorem.
- The map β is the inverse of CRT.
- Let $C = \beta^{-1}(C_1, C_2)$ be a code over $\mathbb{F}_2[\nu]/\langle \nu^2 + \nu \rangle$, then *C* is denoted by $CRT(C_1, C_2)$, where C_1 and C_2 are binary codes and *C* is uniquely determined by C_1 and C_2 .

$$\beta : \mathbb{F}_2[v]/\langle v^2 + v \rangle \to \mathbb{F}_2^2$$
 such that $\beta(a + bv) = (a, a + b)$.

- The ring $\mathbb{F}_2[v]/\langle v^2 + v \rangle$ is isomorphic to $\mathbb{F}_2 \times \mathbb{F}_2$ via the Chinese Remainder Theorem.
- The map β is the inverse of CRT.
- Let $C = \beta^{-1}(C_1, C_2)$ be a code over $\mathbb{F}_2[\nu]/\langle \nu^2 + \nu \rangle$, then *C* is denoted by $CRT(C_1, C_2)$, where C_1 and C_2 are binary codes and *C* is uniquely determined by C_1 and C_2 .

$$\beta : \mathbb{F}_2[v]/\langle v^2 + v \rangle \to \mathbb{F}_2^2$$
 such that $\beta(a+bv) = (a, a+b)$.

- The ring $\mathbb{F}_2[v]/\langle v^2 + v \rangle$ is isomorphic to $\mathbb{F}_2 \times \mathbb{F}_2$ via the Chinese Remainder Theorem.
- The map β is the inverse of CRT.
- Let $C = \beta^{-1}(C_1, C_2)$ be a code over $\mathbb{F}_2[\nu]/\langle \nu^2 + \nu \rangle$, then *C* is denoted by $CRT(C_1, C_2)$, where C_1 and C_2 are binary codes and *C* is uniquely determined by C_1 and C_2 .

Counting Codes over $\mathbb{F}_2[v]/\langle v^2 + v \rangle$

Linear codes

Theorem

Let $k \le n/2$ and $l \le k$. The number of linear codes over $\mathbb{F}_2[v]/\langle v^2 + v \rangle$ of length *n* and size 2^k where the size of the hull is 2^l is equal to

$$\sum_{k=k_{1}+k_{2}} \sum_{l=l_{1}+l_{2}} \mathfrak{N}_{n,k_{1},l_{1}} \cdot \mathfrak{N}_{n,k_{2},l_{2}}$$

$$= \sum_{k=k_{1}+k_{2}} \sum_{l=l_{1}+l_{2}} \left(\sum_{i=l_{1}}^{k_{1}} \left[\begin{array}{c} n-2i\\ k_{1}-i \end{array} \right] \left[\begin{array}{c} i\\ l_{1} \end{array} \right] (-1)^{i-l_{1}} 2^{\binom{i-l_{1}}{2}} \sigma_{n,i} \right)$$

$$\cdot \left(\sum_{j=l_{2}}^{k_{2}} \left[\begin{array}{c} n-2j\\ k_{2}-j \end{array} \right] \left[\begin{array}{c} j\\ l_{2} \end{array} \right] (-1)^{j-l_{2}} 2^{\binom{j-l_{2}}{2}} \sigma_{n,j} \right)$$

where $\sigma_{n,i}$ is the number of binary self-orthogonal codes of length n and size 2^i .

Table 1: The number of codes over $\mathbb{F}_2[v]/\langle v^2 + v \rangle$ of length *n* and size 2^k , with a hull of size 2^l

n	k	1	Number	n	k	l	Number	n	k	1	Number
2	0	0	1	8	0	0	1	10	0	0	1
	1	0	4		1	0	256		1	0	1024
	1	1	2		1	1	254		1	1	1022
4	0	0	1		2	0	27264		2	0	436736
	1	0	16		2	1	40576		2	1	653824
	1	1	14		2	2	18775		2	2	304471
	2	0	104		3	0	1478656		3	0	94961664
	2	1	136		3	1	2499296		3	1	161622912
	2	2	55		3	2	1382976		3	2	90282240
6	0	0	1		3	3	338832		3	3	22346160
	1	0	64		4	0	40786432		4	0	$10^{10} \cdot 10520$
	1	1	62		4	1	65877504		4	1	$10^{10} \cdot 17134$
	2	0	1696		4	2	44123352		4	2	$10^{10} \cdot 11603$
	2	1	2464		4	3	13590432		4	3	$10^9 \cdot 36314$
	2	2	1111		4	4	2104929		4	4	569194425
	3	0	22784						5	0	$10^{11} \cdot 51070$
	3	1	37432						5	1	$10^{11} \cdot 89580$
	3	2	199206						5	2	$10^{11} \cdot 63325$
	3	3	4680						5	3	$10^{11} \cdot 23516$
									5	4	$10^{10} \cdot 43198$
									5	5	$10^9 \cdot 42609$

Appendix

For Further Reading i

E.F. Assmus, J.D. Key.

Affine and projective planes

Discrete Math., 83, 161-187, 1990.

S.T. Dougherty.

Algebraic Coding Theory Over Finite Commutative Rings

SpringerBriefs in Mathematics. Springer, Cham, 2017, ISBN: 978-3-319-59805-5; 978-3-319-59806-2.

S.T. Dougherty.

Nets and their codes

Des., Codes and Cryptog., 3, 315-331, 1993.

S.T. Dougherty.

A soding-theoretic solution to the 36 officer problem Des., Codes and Cryptog., **4**, 123-128, 1994.

For Further Reading ii

- S.T. Dougherty, M. Harada and P. Solé.
 Self-dual codes over rings and the chinese remainder theorem Hokkaido Math. J., 28, 253-283, 1999.
- S.T. Dougherty and E. Salturk.
 Counting codes over rings Designs, Codes and Crypt.**73**, 151-165, 2014.
- F.J. MacWilliams, N.J.A Sloane. The Theory Of Error Correcting Codes. North-Holland Pub. Co., 1977.
 - V. Pless.

The number of isotropic subspaces in a finite geometry

Rend. Sc. Fis. Mat. e Nat., Accad. Naz. Lincie, Ser. VIII, **39**, 418-421, 1965.

For Further Reading iii

V. Pless.

On the uniqueness of the Golay codes

J. Combin. Theory., 5, 215-228, 1968.

B. Segre.

Le geometrie di Galois

Annali di Mat. Pura Appl., Ser. 4a, 49, 1-96, 1959.

N. Sendrier.

On the dimension of the hull

SIAM J. Discrete Math., 10, No. 2, 282-293, 1997.

N.J.A. Sloane.

The on-line encyclopedia of integer sequences (OEIS)

Available online at https://oeis.org/.

J. Wood.

Duality for modules over finite rings and applications to coding theory Amer. J. Math. **121**, 555-575, 1999.

For Further Reading iv

S. Zhu, Y. Wang and M. Shi. *Some results on cyclic codes over* $\mathbb{F}_2 + v\mathbb{F}_2$ IEEE Transactions on Information Theory, **56**, No. 4, 1680-1684, 2010.

Thank you

Thank you for your attention!